这些问题不解决在医疗领域只能打下手永恒
中医减肥 2021年08月24日 浏览:4 次
共同探讨问题及解决的办法。班子在处理一切问题时都坚持公开、公正、公平的原则 智能“阅片”、临床决策、护理机器人……近年来,随着人工智能的蓬勃发展,人工智能与医学结合的相关技术开发也进行得如火如荼。
近日,人工智能在药物研发领域迈出重要一步,澳大利亚研究团队将全球首个AI设计药物——“涡轮增压”流感疫苗推入人体试验阶段,这款药物开发用时两年时间。
就像“互联+”一样,“人工智能+”的模式必然会给我们的生活带来翻天覆地的变化,但在涉及生理和生命的医学领域,人工智能落地还将面临哪些挑战?
质与量并重 基础数据仍需“精炼”
不论在何种领域,数据都是让机器聪明起来的根本。
“人工智能若想在医学领域长足发展,数据质量、数据量和标准化方面还有待改进和完善。” 8月6日,天津市肿瘤医院副院长徐波在接受科技采访时表示。
“医疗大数据如何‘降噪’是个关键问题。”徐波指出,医疗大数据涉及的类型近年来呈多模态发展。而病例数据覆盖面广,服务用户多样,如何构建以病人、医生、医院和政府等多中心的数据治理体系,进而面向不同的用户提供不同的数据视图和分析结果,是医疗大数据采集及研究中亟待解决的问题。
自改革开放以来,我国医学领域发展迅速,信息化程度也在逐渐提高。但是随着医疗设备更新迭代,数据的格式和录入的内容也在不断变化。以慢性病为例,即便是同一位病人在同一家医院治疗,几年前后的数据内容和形式也可能会大有不同。更何况我国医学领域在病种分类、名称方面也有部分尚未统一,还有一些医生会采用口语、简称,如“乳腺癌”和“乳癌”就是不同医师对同一种病症的不同叫法,这也会给人工智能在临床决策或影像分析时平添困扰。
“尽管我国医院的数据庞大, 但由于疾病的复杂性,数据维度、特性各不相同, 质量参差不齐,导致很多细分的病种实际可用数据量少,尤其是较为罕见的疾病类型。如果是多学科交叉的病症可使用的数据量就更加有限了。”徐波表示。
此外,数据共享也存在壁垒。我国当前医院与医院、同一家医院内科系互不相连, 没有统一标准的临床结构化病历报告,不同地域甚至不同医院之间的数据库无法通用。
我国人口数量庞大,医学数据体量也很大,但在某种程度上,人工智能发展却陷入了“无数据可用”的尴尬境地,怎样才能将这座“富矿”充分挖掘出来呢?
“数据标准化和规范化是解决该问题的必经之路。”在徐波看来,应加快医疗数据电子化、标准化的进程, 打破医疗机构的数据壁垒, 建立数据共享机制,进一步“精炼”医学领域数据。
广东新标木门怎么样德阳哪有白癜风专科医院
辽源白癜风医院哪家好

- 上一篇: 这个小区有新玩法刷脸扔垃圾换积分力量
- 下一篇 这套智能安保系统春节在人流聚集区起了大作容易
-
特别窍门减肥大惊喜
2019-07-16
-
番荔枝根的功效与作用
2019-07-15
-
河南开封将持续增加中医药投入
2019-07-15
-
中医教您怎么健康变白
2019-07-13
-
湖北中医药大学学生古礼祭拜李时珍
2019-07-12
-
针灸成功治疗肥胖症图
2019-07-12